Europe's stem cell hub

We’re here to help European citizens make sense of stem cells.  We provide reliable, independent information and road-tested educational resources on stem cells and their impact on society. We're funded by the European Commission. Learn more.

Featured stem cell fact sheets, news and resources

Study reveals the genesis of brain cells that degenerate in Huntington’s disease

Elena Cattaneo reports on recent research that examines how a particular type of cell develops in the human brain, and how studies like this fit into the overall picture of research collaboration and funding, in Italy and in Europe.

It took 4 years of continuous experiments of 17 researchers from 6 groups in 2 European countries to understand more about how cells develop in the striatum. The striatum is the area of the brain that degenerates in Huntington’s disease (HD) – a neurological disorder that as of today, has no cure. This work, led by my group at the University of Milan, was published in Nature Neuroscience on 10 Nov 2014.

Making insulin producing beta cells from stem cells – how close are we?

The unseen world: Insulin-producing cells made from human embryonic stem cellsThe unseen world: Insulin-producing cells made from human embryonic stem cells

Two recent studies have revealed for the first time how to to generate insulin producing cells, that resemble normal beta cells, in the lab from human pluripotent stem cells. This provides a step forward for a potential cell therapy treatment for diabetes. But how alike are these cells to the beta cells found in our bodies? How close are we to testing these cells in diabetics? And what other questions still remain? In this commentary, Henrik Semb tackles these questions providing perspective in this complex and challenging field.

Interview with Henrik Semb: the pancreas, beta cells and diabetes

Professor Henrik Semb is the director of the Danish stem cell center. His research group focuses on how organs are formed and cells acquire their fates in vivo. In particular, they are interested in how processes such as cell shape changes, movement and polarity, not only affect 3D architecture of the developing organ but also what type of cells are made.  In vivo findings from their lab have given insight into coaxing human pluripotent stem cells into functional insulin-producing beta cells as a source for therapy in type 1 diabetes.

Stem cell transplants for Parkinson’s disease edging closer

A major breakthrough in the development of stem cell-derived brain cells has put researchers on a firm path towards the first ever stem cell transplantations in people with Parkinson’s disease. A new study presents the next generation of transplantable dopamine neurons produced from stem cells. These cells carry the same properties as the dopamine neurons found in the human brain.

Cell identity and reprogramming

Last updated:
3 Oct 2014

Our body contains several hundred different types of specialised cells. Each cell has very specific features that enable it to do its job. Yet every cell in your body contains the same genes – the same biological ‘instruction book’. So what makes each type of cell different? And can we control or change cell identities? How might this help us develop new approaches to medicine?