

Teachers in Residence

Stem Cells

Secondary Level Lesson Plan

Science ST Foundation Ireland For what's next

"Breaking Barriers"

THE PHILOSOPHY BEHIND OUR LESSON PLANS

Teachers participating in CÚRAM's Teachers in Residence programme have developed a 'learning module' on MedTech in Ireland that links with multiple streams and themes in the primary and junior cycle curricula. The primary and secondary lesson plans were created **by teachers for teachers** and are accessible online to use in classrooms all over the world.

During their residencies, teachers developed the contents of the lesson plans by working directly with CÚRAM researchers, while learning about the medical device research being carried out at CÚRAM. Primary teachers were paired with secondary teachers to create plans covering five major themes: biomaterials, heart, brain, musculoskeletal system and stem cells. The partnership between the primary and secondary teachers ensured that the materials created follow a natural progression from one age group to the next.

The lesson plans were further designed and formatted by a Visual Artist who used various teaching methodologies to suit the multiple intelligences and range of learning styles and abilities present in classrooms. By using a range of teaching approaches we hope to engage all children at all levels whatever their natural talents or interests may be.

We hope that you and your students find these resources an enjoyable way to learn about our research centre and the MedTech industry!

Sincerely,

Dr. Sarah Gundy Programme Manager-Teachers in Residence

Stem Cells Introduction Lesson

Secondary School Curriculum Links

Strand One: The Nature of Science

Element:

Understanding about science

Students should be able to:

1. Appreciate how scientists work and how scientific ideas are modified over time.

Element:

Investigating in science

Students should be able to:

3. Design, plan and conduct investigations; explain how reliability, accuracy, precision, fairness, safety, ethics and selection of suitable equipment have been considered.

Element:

Science in society

Students should be able to:

10. Appreciate the role of science in society; and its personal, social and global importance; and how society influences scientific research.

Strand Five: Biological world Element:

Building blocks

Students should be able to:

1. Investigate the structures of animal and plant cells and relate them to their functions.

Element:

Systems and interactions

6. Evaluate how human health is affected by: inherited factors and environmental factors including nutrition; lifestyle choices.

Element:

Sustainability

Students should be able to:

9. Discuss medical, ethical, and societal issues.

Learning Outcomes

Children should be enabled to:

- 1. Know what a stem cell is.
- 2. Understand the differences between various types of stem cells.
- 3. Recognise why stem cell research is important.
- 4. Understand the use of stem cells and why scientists are so interested in them.
- 5. Understand the advantages and disadvantages associated with stem cell use, and the current limitations.

Keywords and Definitions

	Keyword	Definition
1.	Cell	The smallest part of an animal or plant that is able to function independently. Every animal or plant is made up of trillions of cells.
2.	Stem Cell	A type of cell that can copy themselves (self-renew) and make other types of cells (differentiate).
3.	Self-renewal	Process of creating more cells of the same cell type through cell division.
4.	Cell Division	The splitting of a cell into two new cells with the same genetic material.
5.	Differentiate	Process of cells obtaining more specialised features to perform specific functions.
6.	Regeneration	Regrowth by an animal or plant of an organ, tissue, or part that has been lost or damaged.
7.	Gene	A section of DNA that controls what a cell does.
8.	Limb	Your limbs are your arms and legs.

STEMinator Card Game

Rules:

- Students get into pairs or groups of three and one set of cards is given to each pair or group.
- The dealer shuffles and deals all of the cards face down.
- The player to the dealer's left starts by reading out the value from a category from the top card (Self-renewal, Differentiation, Relative Size, or Relative Number)
- The player with the highest value wins and collects all of the cards, including their own, and places them on the bottom of his/her pile.
- The winner of the hand gets to go again and chooses a category from the next card.
- If two or more cards share the top value then all the cards are placed in the middle and the same player chooses again from the next card. The winner of the hand takes the cards in the middle as well.
- The person with all of the cards at the end is the winner.

Categories:

Self-renewal = The ability of the cell to proliferate or self-renew

Relative Size = The size of the cell compared to other cells in the body

Differentiation = How specialised or differentiated the cell is (or the degree of specialisation)

Relative Number = The number of cells in the body compared to other cell types

Cells on the Cards:

Lineage Group	Cell Name	Characteristics
Cartilage	Transitory Chondrocyte	This type of cell gives rise to more a mature chondrocyte, called an articular chondrocyte.
Cartilage	Articular Chondrocyte	Cells that maintain and produce the components that make up cartilage.
Cartilage	Cartilage	A rubber-like tissue made of collagen and elastin that covers and protects the ends of bones at joints.
Tendon	Mesenchymal Stem Cell	A type of stem cell that is able to differentiate into a wide variety of cell types.
Tendon	Tenoblast	A spindle-shaped, immature tendon cell that gives rise to a tenocyte.
Tendon	Tenocyte	A mature tendon cell that attaches to collagen fibres in a tendon.
Blood Cell	Hematopoetic Stem Cell	A stem cell located in bone marrow that gives rise to blood cells.
Blood Cell	Megakarocyte	A large cell found in the bone marrow that produces thrombocytes.
Blood Cell	Thrombocyte (Platelet)	A cell found in the blood involved in clotting to stop bleeding.

Skin	Epidermal Stem Cell	A cell that is responsible for everyday regeneration of the different layers of the epidermis in the skin.
Skin	Keratinocyte (Young)	This cell type is located in the inner layer of the skin's epidermis.
Skin	Keratinocyte (Old)	This type of cell forms a protective barrier in the outer layer of the skin's epidermis.
Muscle	Myoblast	These cells combine and develop into myoblast tubes to form muscles.
Muscle	Myoblast (Tube)	These cells are formed when myoblasts stick together and form a tube structure.
Muscle	Muscle	This tissue responsible for movement throughout the body from walking to pumping blood.
Myelin Sheath	Neural Stem Cell	A type of cell located in the brain that can generate <u>both</u> neurons and glial cells.
Myelin Sheath	Glial Progenitor Cell	This cell type gives rise to oligodendrocytes.
Myelin Sheath	Oligodendrocyte	A type of cell that insulates neurons which allows the nervous system to react quicker.

Neuron	Neuronal Stem Cell	A cell that makes <u>only</u> neurons in the developing brain.
Neuron	Neurocyte	A cell that can develop into neurons in the brain.
Neuron	Neuron	A cell that receives and transmits information in the brain.
Bone	Transitory Osteoblast	This cell moves into developing and growing bones.
Bone	Osteoblast	This cell produces proteins and minerals to form bone.
Bone	Osteocyte	An osteocyte that has become trapped in a mature bone.

Learning Activities

Children will:

- Understand that some animals/organisms can regenerate.
- Engage in talk and discussion on stem cells and regeneration.
- Participate in a group activity to learn about different types of cells and how the more differentiated a cell is, the lower its self-renewing power.
- Engage in talk and discussion on the different types of cells involved in various lineages and what they specialise in.
- Evaluate their work by filling in the Exit Ticket.

Extra Info / Files

	Web Address	Brief Description
1.	www.youtube.com/watch?v=evH0I7Coc54	Video on Stem Cells
2.	www.eurostemcell.org	Stem Cell Resources
3.	www.crm.ed.ac.uk/stem-cells-regenerative- medicine/what-are-stem-cells	Brief Overview of Stem Cells

Resources

- Teacher Lesson Plan
- PowerPoint to guide lesson
- Exit Ticket
- One set of cards per group of students

Methodologies

- Talk and discussion
- Active learning
- Guided and discovery learning
- Collaborative learning
- Free exploration of materials
- Investigative approach

Assessment

- Self-assessment Exit Ticket
- Teacher observation Discussion while playing STEMinator card game
- Teacher questioning –Talk and discussion

Linkage and Integration

- Maths problem solving
- **STEM** I.T. / Engineering
- Art construction
- S.P.H.E working together co-operatively
- English oral language through talk and discussion and presenting their work

Differentiation By:

- Teaching style
- Support
- Task

Power Point Presentation – Stem Cells

Introducing STEM CELLS

Slide 1

Teachers in Residence Programme Colm Caomhánach and Róisín Ní Bhraiain

How animals are 'organised'

Stem cells are special because: 1) They can copy themselves. (Not all cells can do this!)

2) They can make other types of cells.

Our body uses stem cells to replace damaged or dead cells.

We hope that we can use them in the future to treat diseases.

Stem Cells and Regeneration

When an animal is developing, most of the cells turn into a particular type.

Cells become blood cells, heart cells, bone cells, etc.

During development, stem cells sometimes remain that do not turn into a type of cell.

Some animals can use their stem cells to **regenerate** lost or damaged body parts.

In order for animals to do this, their stem cells need to get the right signals from the rest of the body.

Stem Cells and Regeneration t=0h Specific These signals genes Hydractinia cause the get \odot have the turned stem cells to correct on and move (red t=0.5 h genetic send arrows) to the signals to recipe for area that stem needs cells in regeneration \odot the body

Slide 9

Stem Cell Moving into Head for Regeneration

"Video 2", Bradshaw et al., 2015 Movie can be downloaded at: https://elifesciences.org/articles/05506#media2

Slide 11

Why are Two Jobs Necessary?

Self-renewing cells -Make sure stem cells do not run out

Differentiated cells -Replace dead or damaged cells

After three divisions, finish with <u>one</u> self-renewing cell and <u>three</u> differentiated cells

Slide 13

Stem cells are found all over the body and can turn into various differentiated cells

Myelin Sheath Lineage

Myelin Sheath = An insulating layer surrounding the axon of neurons allowing signals to be transmitted quickly from the brain to the body

Activity:	Assemble into groups of two
Cartilage	Play the "STEMinator" card game in Top Trumps style
	Six groups, each group contains three steps of differentiation
This is a rubber-like tissue made of collagen and elastin which causes water stick to it. These natural biomaterials can withstand	Take note of the different types of cells and what they specialise in
the high pressure at your bone joints. SELF-RENEWAL: 0 DIFFERENTIATION: 71 RELATIVE SIZE: 81 RELATIVE NUMBER: 0.01	Notice how the more differentiated a cell is the lower its self-renewing power

Slide 25

References:

- 1. Bradshaw et al., eLife 2015;4e05506
- 2. commons.wikimedia.org
- 3. pixabay.com
- 4. goo.gl/images/aFpIMG
- 5. goo.gl/images/CbYRk5
- 6. try.stem-kine.com/lf-1/

Sincere thanks to all of the researchers who gave lectures and generously gave their time throughout the course. A special thanks to Mikey Creane, Linda Howard, Maciej Doczyk, Elke Rink and the BrainMatTrain fellows for helping develop the content of the slides and card game.

Thanks also to all the participating teachers who very kindly shared ideas and resources.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073. This project has been funded by the European Union Seventh Framework Programme under Marie Curie Initial Training Networks (FP7-PEOPLE-2012-ITN) and Grant Agreement Number 317304 (AngioMatTrain). This project has also been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Networks and Grant Agreement Numbers 676408 (BrainMatTrain) and 676338 (Tendon Therapy Train).

3-2-1 Exit Ticket Name
3 THINGS I LEARNED FROM THIS LESSON:
1
2 3.
2 QUESTIONS I STILL HAVE:
1.
2
1 IDEA THAT STUCK WITH YOU:
1.

FACTS ABOUT MEDTECH IN IRELAND

- Ireland is the second largest exporter of MedTech products in Europe.
- Ireland's MedTech sector employs 29,000 people across 450 companies.
- Ireland has the highest number of people working in the MedTech industry than in any other European country, per head of population.
- 18 of the world's top 25 MedTech companies have a base in Ireland.
- Galway employs one third of the country's MedTech employees.

The Centre for Cell Manufacturing Ireland (CCMI) is the first ever facility in Ireland to be granted a licence from the Irish Medicines Board to manufacture culture-expanded stem cells for human use. The CCMI is a custom built facility based in the Regenerative Medicine Institute (REMEDI) at the National University of Ireland Galway that supplies stem cells for use in clinical trials. Clinical trials are used to test the safety and effectiveness of treatments for diseases. Stem cells that are manufactured at CCMI are being tested to treat conditions such as critical limb ischemia, osteoarthritis in the knee and diabetic kidney disease.

Source: IDA Ireland, 2017

ACKNOWLEDGEMENTS

The participants of the 2016-2017 Teachers in Residence Programme: Colm Caomhánach, Thomas Flanagan, Andrew Fogarty, Deirdre Halleran, Ann McGreevy, Iseult Mangan, Sinead Molloy, Clive Monahan, Roisin Ni Bhriain and Carmel Rourke.

Niamh Burke and Rachel Duggan, the participants of the 2015-2016 Teachers in Residence Programme.

Sadie Cramer, the Visual Artist who designed the graphics and layouts of the lesson plans.

The researchers who lectured to and helped develop the lesson plans with the educators: Emmanuela Bovo, James Britton, Hector Capella, Joshua Chao, Ankit Chaturvedi, Paolo Contessotto, Mikey Creane, Marc Fernández, Cathal Ó Flatharta, Hakima Flici, Ana Fradinho, Silvia Cabre Gimenez, Jill McMahon, Luis Martins, Renza Spelat, Maura Tilbury, Alexander Trottier and Dimitrios Zeugolis.

Veronica McCauley and Kevin Davison, from the School of Education, and Matt Wallen, Principal of Knocknacarra Educate Together National School, who contributed to the development of the programme.

The individuals who presented to the educators about on-going outreach programmes: Claire Concannon, Muriel Grenon, Enda O'Connell, Jackie O'Dowd and Brendan Smith.

Nóirín Burke and all the staff at the National Aquarium for the workshops given to the primary students.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073.

This project has been funded by the European Union Seventh Framework Programme under Marie Curie Initial Training Networks (FP7-PEOPLE-2012-ITN) and Grant Agreement Number 317304 (AngioMatTrain). This project has also been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2015) under the Marie Skłodowska-Curie Innovative Training Networks and Grant Agreement Numbers 676408 (BrainMatTrain) and 676338 (Tendon Therapy Train).

Centre for Research in Medical Devices Biomedical Sciences National University of Ireland Galway Galway, Ireland

T: +353 91 495833 E: info@curamdevices.ie

www.curamdevices.ie

f @CURAMdevices

