Multiple sclerosis: how could stem cells help?

Last updated:
1 Jul 2015
Multiple sclerosis: how could stem cells help?

Over 400,000 people in the EU have multiple sclerosis (MS). It can cause blurred vision, extreme fatigue, pain, numbness, loss of movement and speech problems. It is the most common disease causing disability in young adults, and there is currently no cure. How could stem cell research help in the development of new treatments?

Did you know?

Some of your nerves can carry electrical signals at 70 to 100 metres per second.

Some nerve signals move fast enough to keep up with a racing car

Some nerve signals move fast enough to keep up with a racing car

Different MS patients suffer from different symptoms; problems with walking or balance are common

Different MS patients suffer from different symptoms; problems with walking or balance are common

A rat oligodendrocyte: a type of cell found in the brain that can form myelin

A rat oligodendrocyte: a type of cell found in the brain that can form myelin

An oligodendrocyte (labelled green) putting a myelin sheath onto a nerve axon

An oligodendrocyte (labelled green) putting a myelin sheath onto a nerve axon

What is multiple sclerosis?

Multiple sclerosis (MS) is a disease that affects nerve cells in the brain and spinal cord. In the healthy body, these nerve cells carry messages between the brain and the rest of the body, allowing us to move, balance, see, hear and feel. In MS, the body’s own immune system attacks the nerve cells so that they cannot function properly.

Healthy nerve cell: the cell is wrapped in a protective, insulating sheath called myelin.Healthy nerve cell: the cell is wrapped in a protective, insulating sheath called myelin.

Each nerve cell is wrapped in a protective sheath called myelin. If the myelin is damaged, the cell can no longer carry messages properly. This is what happens in MS. Depending on which nerves are damaged, patients may suffer from a range of symptoms, commonly involving problems with walking and sensation, bladder and bowel issues and fatigue. These symptoms appear for a time (known as a relapse) and then improve (remission), often going back to normal as the body repairs the damaged myelin. However, ultimately the nerve cells themselves are damaged and begin to degenerate, until eventually they stop working entirely. As the disease progresses, more nerve cells are affected, causing increasing disability.

How is multiple sclerosis treated at the moment?

There is currently no cure for multiple sclerosis but it is possible to treat the symptoms and reduce the number of relapses using medicine, exercise and physiotherapy. These treatments aim to help patients cope with symptoms or try to prevent damage to the nerve cells, but they do not help repair damage once it has occurred. Researchers hope that stem cell therapies may provide new approaches that can both prevent damage and enable us to repair it.

How could stem cells help?

Stem cells are part of the body’s normal repair system – making new cells to replace those that get damaged or die. There are several different types of stem cells and scientists are investigating a number of ways they might be used to develop new treatments for multiple sclerosis:

  1. Preventing damage: It may be possible to use certain types of stem cells to ‘reset’ the immune system (known as immunomodulation). The aim is to prevent the immune system from attacking the nerve cells, or reduce the amount of damage done.
  2. Repairing damage: Stem cells may be able to help repair the damaged myelin sheath, ‘remyelinating’ the nerves and allowing them to function correctly again. This could prevent the nerves themselves from degenerating. In the distant future, researchers hope that stem cells might be used to re-grow nerves that have been lost. However, this is much more complicated.
  3. Developing new medicines: stem cells can be used to grow nerve cells in the lab. These cells can be used to study how MS works, and to test potential new drugs.

The various approaches offer different advantages and may be useful for treating different types or stages of MS.

Current research: preventing damage

Blood stem cells
Blood stem cells are found in the bone marrow. They make the different types of cells found in the blood, including some cells that belong to the immune system and are involved in causing the damage in MS. In some early clinical trials, MS patients have been given transplants of their own blood stem cells in an attempt to ‘reset’ the immune system. The patient’s existing immune cells are first suppressed using chemotherapy (treatment with powerful medicine). Blood stem cells previously taken from the patient’s own bone marrow are then injected into the blood stream with the aim of generating new immune cells that will not attack the body’s nerve cells. This method appears to have shown benefits in some patients, but it is not yet proven and it is a risky procedure, with a death rate of 1-2%. It is therefore only being tested in clinical trials for patients with highly active forms of multiple sclerosis that do not respond to available therapies. Current clinical trials are investigating how effective this treatment is, and how the risks and side effects could be reduced.

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are also present in the bone marrow. They normally form bone, cartilage and fat cells. Some researchers are investigating whether MSCs may help ‘re-train’ the immune system so that it does not attack the nerve cells, or may produce useful chemicals to help repair myelin. Studies in animals have shown some promising results and early clinical trials in patients are now taking place to see whether this may be helpful in humans.

Current research: aiding repair

The brain contains stem cells called neural stem cells. They attempt to repair myelin after damage, but this process is inefficient and is not enough to repair all the damage caused by MS over time. Researchers hope to find ways to encourage these neural stem cells to do a better repair job, or to add new cells to improve repair. Improving repair of the myelin sheath would enable the nerve cells to send messages again and would reduce degeneration of the nerves.

Current research is focussed on understanding how neural stem cells carry out repair, and on searching for drugs that will enhance the repair process using the cells already in the patient’s brain. In the longer term, it may be possible to transplant new neural stem cells, nerve cells or myelin-forming cells into the brain, but this would be a much more complex process and the new cells would first have to be grown in dishes in the laboratory, for example from embryonic stem cells or induced pluripotent stem cells, as described below.

Current research: studying disease and developing drugs

Embryonic stem cells and induced pluripotent stem cells can produce every type of cell found in the body. Researchers have developed ways to control these stem cells to make human nerve cells and myelin in the laboratory. These lab-grown nerve cells do not yet meet the strict safety and purity standards that would be needed for transplantation into patients, but they do give researchers a valuable opportunity to study the problems that occur in MS. They can also be used to test the effects of potential new drugs. Carrying out studies on cells may help to speed up the progress of drug development because important information can be obtained in the early stages of a study using cells, before research on animals is required.

Can MS be treated with stem cells now?

No. Although stem cells are already very useful in MS disease research, there are currently no approved stem cell treatments available for multiple sclerosis. Several different approaches and types of stem cells are being investigated for their potential use in future treatments: stem cells may be able to ‘reset’ the immune system, repair the myelin on nerve cells or perhaps in the long-term may even be used to grow completely new nerve cells. Stem cells are unlikely to cure multiple sclerosis but in the future may be able to slow, stop or even reverse the progress of the disease. However, much more research is needed to establish whether the different sorts of stem cells can provide safe and effective treatments for MS, and how those cells should be used.

Find out more

International MS Society Public Information Booklet on Stem Cells
EuroStemCell FAQ for information on stem cell clinical trials and treatments
Information on MS clinical trials from the National Multiple Sclerosis Society in the USA
The European Multiple Sclerosis Platform
Multiple Sclerosis Trust
The MS Society (UK)
BBC news film clip describing one research approach to MS
In our Toolkit: lesson for schools on stem cell applications using MS as a case study
Multiple Sclerosis Discovery Forum - includes regular roundups of MS research findings

Acknowledgements and references

This factsheet was created by Claire Keith and reviewed by Anna Williams and Gianvito Martino.

Lead image of mouse neural stem cells by Gianvito Martino. Other cell images by Anna Williams. Car by M. Trischler, man's legs courtesy of the MS Society